



| Probability Theory: Jointly Distributed Random Variables | Joint Distribution Functions |
|----------------------------------------------------------|------------------------------|
| Joint Cumulative Probability Distribution F              | Function 🛛 🍯                 |
|                                                          |                              |
| Answering probability statements in terms of joint       | t CDF                        |
| $P\{X > a, Y > b\} = 1 - P(\{X > a, Y > b\}^{c})$        |                              |
| $= 1 - P(\{X > a\}^{c} \cup \{Y > b\}^{c})$              |                              |
| $= 1 - P(\{X \le a\} \cup \{Y \le b\})$                  |                              |
| $= 1 - [P\{X \le a\} + P\{Y \le b\} - P\{$               | $X \leq a, Y \leq b\}$ ]     |
| $= 1 - F_X(a) - F_Y(b) + F(a,b)$                         | J                            |
| In general, whenever $a_1 < a_2$ and $b_1 < b_2$         |                              |
| In general, whenever $a_1 < a_2$ and $b_1 < b_2$         |                              |
| $P\{a_1 < X \le a_2, b_1 < Y \le b_2\} =$                |                              |
| $F(a_2, b_2) + F(a_1, b_1) - F(a_1)$                     | $,b_2)-F(a_2,b_1)$           |
|                                                          |                              |
| ©2022 Prof. Hicham Elmonqui                              | 3 / 26                       |
|                                                          | 5725                         |

| Probability Theory: Jointly Distributed Random Variables | Joint Distribution Functions                        |
|----------------------------------------------------------|-----------------------------------------------------|
| Joint Probability Mass Funct                             | tion 📱                                              |
|                                                          |                                                     |
|                                                          |                                                     |
| Definition                                               |                                                     |
| When $X$ and $Y$ are both discrete RVs by                | , the joint pmf of <i>X</i> and <i>Y</i> is defined |
| $p(x,y) = P\{X$                                          | =x, Y=y                                             |
| Marginal pmf from joint pmf                              |                                                     |
| $p_X(x) = P\{X = x\}$                                    | $p_Y(y) = P\{Y = y\}$                               |
| $=\sum_{y:p(x,y)>0}p(x,y)$                               | $=\sum_{x:p(x,y)>0}p(x,y)$                          |
|                                                          |                                                     |
|                                                          |                                                     |
|                                                          |                                                     |
| ©2022 Prof. Hicham Elmongui                              | 4/26                                                |

| Probability Theory: Jo                                                                                                                                                                                                  | intly Distributed                 | Random Varia | bles    |        |       | Joint Distrib      | oution Functions |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|---------|--------|-------|--------------------|------------------|
| Example                                                                                                                                                                                                                 |                                   |              |         |        |       |                    | 1                |
| Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue balls. Let $X$ and $Y$ denote, respectively, the number of red and white balls chosen. Find the joint pmf of $X$ and $Y$ . |                                   |              |         |        |       | •                  |                  |
| Solution                                                                                                                                                                                                                |                                   |              |         |        |       |                    |                  |
| $p(i,j) = \binom{3}{i} \binom{4}{j} \binom{5}{3-i-j} / \binom{12}{3}$                                                                                                                                                   |                                   |              |         |        |       |                    |                  |
| i                                                                                                                                                                                                                       | j                                 | 0            | 1       | 2      | 3     | Row sum $P\{X=i\}$ |                  |
|                                                                                                                                                                                                                         | 0                                 | 10/220       | 40/220  | 30/220 | 4/220 | 84/220             |                  |
|                                                                                                                                                                                                                         | 1                                 | 30/220       | 60/220  | 18/220 | 0     | 108/220            |                  |
|                                                                                                                                                                                                                         | 2                                 | 15/220       | 12/220  | 0      | 0     | 27/220             |                  |
|                                                                                                                                                                                                                         | 3                                 | 1/220        | 0       | 0      | 0     | 1/220              |                  |
|                                                                                                                                                                                                                         | ol sum<br>{ <i>Y</i> = <i>j</i> } | 56/220       | 112/220 | 48/220 | 4/220 |                    |                  |
| ©2022 Prof. Hicham                                                                                                                                                                                                      | Elmongui                          |              |         |        |       |                    | 5 / 26           |







## Produbility Theory: Jointly Distributed Random Variables Marginal Probability Density Function Definition If X and Y are jointly continuous, they are individually continuous. Their pdf can be obtained as follows: $P\{X \in A\} = P\{X \in A, Y \in (-\infty, \infty)\}$ $= \int_{A} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx$ $= \int_{A} f_{X}(x) \, dx$ where $f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$ Marginal pdf from joint pdf $f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$ $f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$ (2022 Pol. Hehm Elmogut)



| Probability Theory: Jointly Distributed Random Variables Independent Random Varia                                                  | ables  |
|------------------------------------------------------------------------------------------------------------------------------------|--------|
| Independent Random Variables                                                                                                       | J      |
| Definition                                                                                                                         |        |
| The RVs $X$ and $Y$ are said to be <i>independent</i> if, for any two sets of renumbers $A$ and $B$ ,                              | al     |
| $P{X \in A, Y \in B} = P{X \in A}P{Y \in B}$                                                                                       |        |
| In other words, X and Y are independent if, for all A and B, the even $E_A = \{X \in A\}$ and $F_B = \{Y \in B\}$ are independent. | ts     |
| In terms of joint CDF, X and Y are independent if                                                                                  |        |
| $F(a,b) = F_X(a)F_Y(b)$ for all $a,b$                                                                                              |        |
| In case of discrete RVs, X and Y are independent if                                                                                |        |
| $p(x,y) = p_X(x)p_Y(y)$ for all $x, y$                                                                                             |        |
| In case of continuous RVs, X and Y are independent if                                                                              |        |
| $f(x,y) = f_X(x)f_Y(y)$ for all $x, y$                                                                                             |        |
| Random variables that are not independent are said to be dependent                                                                 | : )    |
| ©2022 Prof. Hicham Elmongui 11                                                                                                     | 1 / 26 |

### Probability Theory: Jointy Distributed Random Variables **Examples** If $X_1$ and $X_2$ are independent exponential RVs with respective parameters $\lambda_1$ and $\lambda_2$ , find the distribution of $Z = X_1/X_2$ . **Solution** Since $X_1$ and $X_2$ are independent, their joint pdf would be $f_{X_1,X_2}(x,y) = \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 y}, \quad x, y > 0$ The distribution of $Z = X_1/X_2$ is $F_Z(z) = P(Z \le z)$ $= P(X_1/X_2 \le z)$ $= P(X_1 \le zX_2)$ $= \iint_{(x,y):x \le zy} f_{X_1,X_2}(x,y) \, dx \, dy$ $= \int_0^{\infty} \int_0^{2^y} \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 y} \, dx \, dy = \frac{\lambda_1 z}{\lambda_1 z + \lambda_2}$











### Sums of Independent Gamma Random Variables

For a fixed value of  $\boldsymbol{\lambda},$  the family of gamma distributions is closed under convolution.

### Proposition

If  $X_i$ ,  $i = 1, 2, \dots, n$  are independent gamma random variables with respective parameters  $(t_i, \lambda)$ ,  $i = 1, 2, \dots, n$ , then

$$\sum_{i=1}^{n} X_i \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} t_i, \lambda\right)$$

Example

If  $X_i$ ,  $i = 1, 2, \dots, n$  are i.i.d. exponential RVs with parameter  $\lambda$ , calculate the pdf of  $X_1 + X_2 + \dots + X_n$ .

Solution

An exponential RV with parameter  $\lambda$  is the same as a gamma RV with parameters  $(1, \lambda)$ , it follows that  $X_1 + X_2 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$ .

### Example: $\chi^2$ Probability Distribution

If  $Z_1, Z_2, \dots, Z_n$  are indep standard normal RVs, then  $\chi_n^2 = \sum_{i=1}^n Z_i^2$  is said to have the *chi-squared* dist. with *n* degrees of freedom. Calculate  $f_{\chi_n^2}(y)$ 

Sums of Indep

$$f_{Z^{2}}(y) = \frac{1}{2\sqrt{y}} (f_{Z}(\sqrt{y}) + f_{Z}(-\sqrt{y}))$$

$$= \frac{1}{2\sqrt{y}} \times \frac{2}{\sqrt{2\pi}} e^{-y/2}$$

$$= \frac{(1/2)^{\frac{1}{2}} y^{\frac{1}{2}-1} e^{-y/2}}{\Gamma(\frac{1}{2})}$$

$$\implies \chi_{1}^{2} = Z^{2} \sim \text{Gamma}(\frac{1}{2}, \frac{1}{2})$$

$$\Gamma(\frac{n}{2}) = \begin{cases} (\frac{n}{2}-1)! & n \text{ is even} \\ (\frac{n}{2}-1)\Gamma(\frac{n}{2}-1) & n \text{ is odd} \end{cases}$$

$$\chi_{n}^{2} = \sum_{i=1}^{n} Z_{i}^{2}$$

$$\chi_{n}^{2} \sim \text{Gamma}(\frac{1}{2}, \frac{1}{2})$$

$$f_{\chi_{n}^{2}}(y) = \frac{(1/2)^{\frac{n}{2}} y^{\frac{n}{2}-1} e^{-y/2}}{\Gamma(\frac{n}{2})}, \quad y > 0$$

$$= \frac{y^{\frac{n}{2}-1} e^{-y/2}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}, \quad y > 0$$



# Sums of Independent Normal Random Variables The family of normal distributions is closed under convolution. Proposition If $X_i, i = 1, 2, \dots, n$ are independent normal random variables with respective parameters $(\mu_i, \sigma_i^2), i = 1, 2, \dots, n$ , then $\sum_{i=1}^n X_i \sim \text{Normal}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$

### Example

A basketball team will play a 44-game season of which 26(18) games against class A(B) teams. Suppose that the team will beat a class A(B) team with probability .4(.7) and that the results of the different games are independent. How likely is it that the team wins 25 games or more?

#### Solution

- Let *X<sub>A</sub>* and *X<sub>B</sub>* respectively denote the number of games the team wins against class A and against class B teams.
- $X_A$  and  $X_B$  are indep binomial RVs (approximated as normal RVs)

$$\begin{split} E[X_A] &= 26(.4) = 10.4 \\ Var(X_A) &= 26(.4)(.6) = 6.24 \\ E[X_B] &= 18(.7) = 12.6 \\ Var(X_B) &= 18(.7)(.3) = 3.78 \\ E[X_A + X_B] &= 10.4 + 12.6 = 23 \\ Var(X_A + X_B) &= 6.24 + 3.78 = 10.02 \end{split} \qquad \begin{array}{l} P\{X_A + X_B \geq 25\} \\ &= P\{X_A + X_B \geq 24.5\} \quad (\text{cont. correction}) \\ &= P\left\{\frac{X_A + X_B - 23}{\sqrt{10.02}} \geq \frac{24.5 - 23}{\sqrt{10.02}}\right\} \\ &\approx P\{Z \geq .4739\} = 1 - P\{Z < .4739\} \\ &\approx .3178 \end{split}$$

The probability that the price is up after one week is  

$$P\left\{\frac{S(1)}{S(0)} > 1\right\} = P\left\{\log\left(\frac{S(1)}{S(0)}\right) > 0\right\} = P\left\{Z > \frac{0 - .0165}{.0730}\right\}$$
Since the successive price ratios are independent, the probability that  

$$P\left\{\frac{S(1)}{S(0)} > 1\right\} = P\left\{\log\left(\frac{S(1)}{S(0)}\right) > 0\right\} = P\left\{Z < .2260\right\} \approx .5894$$

### Sums of Independent Poisson Random Variables

If *X* and *Y* are independent Poisson random variables with respective parameters  $\lambda_1$  and  $\lambda_2$ , calculate the distribution of *X* + *Y*. Solution

I

The event  $\{X + Y = n\}$  may be written as the union of the disjoint events  $\{X = k, Y = n - k\}, 0 \le k \le n$ . Therefore,

$$P\{X+Y=n\} = \sum_{k=0}^{n} P\{X=k, Y=n-k\} = \sum_{k=0}^{n} P\{X=k\} P\{Y=n-k\} = \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} \times e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \frac{1}{k!(n-k)!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \sum_{k=0}^{n} \frac{n!}{k!} \sum$$

If  $X_i$ ,  $i = 1, 2, \dots, n$  are independent Poisson RVs with respective parameters  $\lambda_i$ ,  $i = 1, 2, \dots, n$ , then  $X_1 + X_2 + \dots + X_n \sim \text{Poisson}(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ 

### Sums of Independent Binomial Random Variables

L

If X and Y are independent binomial random variables with respective parameters (n,p) and (m,p), calculate the distribution of X + Y. Solution

Recalling the interpretation of a binomial RV, and without any computation at all,  $X + Y \sim \text{Binomial}(n + m, p)$ 

$$=\sum_{i=0}^{n} P\{X = i, Y = k - i\}$$

$$=\sum_{i=0}^{n} P\{X = i\} P\{Y = k - i\}$$

$$=\sum_{i=0}^{n} \binom{n}{i} p^{i} q^{n-i} \times \binom{m}{k-i} p^{k-i} q^{m-k+i}$$

$$=\sum_{i=0}^{n} \binom{n}{i} p^{i} q^{n-i} \times \binom{m}{k-i} p^{k-i} q^{m-k+i}$$

$$X + Y \sim \text{Binomial}(n+m,p)$$
If  $X_{i}, i = 1, \dots, N$  are independent binomial RVs with respective parame-

ters  $(n_i, p), i = 1, \dots, N$ , then  $X_1 + \dots + X_N \sim \text{Binomial}(n_1 + \dots + n_N, p)$