

Probability Theory: Jointly Distributed Random Variables John Distribution Functions Joint Distribution Functions Marginal Probability Density Function **Definition** If *X* and *Y* are jointly continuous, they are individually continuous. Their pdf can be obtained as follows: *P*{*X* ∈ *A*} = *P*{*X* ∈ *A*, *Y* ∈ (−∞,∞)} $=$ $\sqrt{2}$ *A* \int^{∞} −∞ *f*(*x*,*y*) d*y* d*x* $=$ $\sqrt{2}$ $\int_A f_X(x) dx$ where $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ Marginal pdf from joint pdf $f_X(x) = \int_{-\infty}^{\infty}$ *f*(*x*, *y*) d*y f*_Y(*y*) = $\int_{-\infty}^{\infty} f(x, y) dx$ c 2022 Prof. Hicham Elmongui 9 / 26

Probability Theory: Jointly Distributed Random Variables Independent Random Variables 压 **Examples** If X_1 and X_2 are independent exponential RVs with respective parameters λ_1 and λ_2 , find the distribution of $Z = X_1/X_2$. **Solution** Since X_1 and X_2 are independent, their joint pdf would be $f_{X_1, X_2}(x, y) = \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 y}, \qquad x, y > 0$ The distribution of $Z = X_1/X_2$ is $F_Z(z) = P(Z \leq z)$ $= P(X_1/X_2 \leq z)$ $= P(X_1 \leq zX_2)$ $=$ $\sqrt{2}$ *fX*1,*X*² (*x*,*y*) d*x* d*y* (*x*,*y*):*x*≤*zy* $=$ \int^{∞} \int^{zy} $\int_0^{zy} \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 y} dx dy = \frac{\lambda_1 z}{\lambda_1 z + \lambda_2 z}$ $\lambda_1 z + \lambda_2$ 0 c 2022 Prof. Hicham Elmongui 2022 Prof. Hicham Elmongui 2022 Prof. Hicham Elmongui 2022 Prof. Hicham Elmongui 2023

c 2022 Prof. Hicham Elmongui 15 / 26

Sums of Independent Gamma Random Variables

For a fixed value of λ , the family of gamma distributions is closed under convolution.

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables

Proposition

If X_i , $i = 1, 2, \dots, n$ are independent gamma random variables with respective parameters (t_i, λ) , $i = 1, 2, \dots, n$, then

$$
\sum_{i=1}^n X_i \sim \text{Gamma}\left(\sum_{i=1}^n t_i, \lambda\right)
$$

Example

If X_i , $i = 1, 2, \dots, n$ are i.i.d. exponential RVs with parameter λ , calculate the pdf of $X_1 + X_2 + \cdots + X_n$.

Solution

An exponential RV with parameter λ is the same as a gamma RV with parameters (1, λ), it follows that $X_1 + X_2 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$. c 2022 Prof. Hicham Elmongui 19 / 26

Example: χ^2 Probability Distribution

丄

If Z_1, Z_2, \dots, Z_n are indep standard normal RVs, then $\chi_n^2 = \sum_{i=1}^n Z_i^2$ is said to have the *chi-squared* dist. with *n* degrees of freedom. Calculate *f*^χ 2 *n* (*y*)

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables

Solution
\n
$$
f_{Z^2}(y) = \frac{1}{2\sqrt{y}} (f_Z(\sqrt{y}) + f_Z(-\sqrt{y}))
$$
\n
$$
= \frac{1}{2\sqrt{y}} \times \frac{2}{\sqrt{2\pi}} e^{-y/2}
$$
\n
$$
= \frac{(1/2)^{\frac{1}{2}}y^{\frac{1}{2}-1}e^{-y/2}}{\Gamma(\frac{1}{2})}
$$
\n
$$
\Rightarrow x_1^2 = Z^2 \sim \text{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)
$$
\n
$$
f_{Z_n^2}(y) = \frac{(1/2)^{\frac{2}{2}}y^{\frac{n}{2}-1}e^{-y/2}}{\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
f_{Z_n^2}(y) = \frac{(1/2)^{\frac{n}{2}}y^{\frac{n}{2}-1}e^{-y/2}}{\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-1}e^{-y/2}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}, \quad y > 0
$$
\n
$$
= \frac{y^{\frac{n}{2}-
$$

Sums of Independent Normal Random Variables

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables Sums of Independent Random Variables

Ŧ

The family of normal distributions is closed under convolution.

Proposition

If X_i , $i = 1, 2, \dots, n$ are independent normal random variables with respective parameters $(\mu_i, \sigma_i^2), i = 1, 2, \cdots, n$, then

$$
\sum_{i=1}^{n} X_i \sim \text{Normal}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)
$$

c 2022 Prof. Hicham Elmongui 22 / 26

Example

A basketball team will play a 44-game season of which 26(18) games against class A(B) teams. Suppose that the team will beat a class A(B) team with probability .4(.7) and that the results of the different games are independent. How likely is it that the team wins 25 games or more?

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables

Solution

- \bullet Let X_A and X_B respectively denote the number of games the team wins against class A and against class B teams.
- X_A and X_B are indep binomial RVs (approximated as normal RVs)

 $E[X_A] = 26(.4) = 10.4$ $Var(X_A) = 26(.4)(.6) = 6.24$ $E[X_B] = 18(.7) = 12.6$ $Var(X_B) = 18(.7)(.3) = 3.78$ $E[X_A + X_B] = 10.4 + 12.6 = 23$ $Var(X_A + X_B) = 6.24 + 3.78 = 10.02$ $P{X_A + X_B \ge 25}$ $= P\{X_A + X_B \ge 24.5\}$ (cont. correction) = *P* $\left\{\frac{X_A + X_B - 23}{\sqrt{10.02}} \ge \frac{24.5 - 23}{\sqrt{10.02}}\right\}$ ≈ *P* {*Z* ≥ .4739} = 1−*P* {*Z* < .4739} $≈ .3178$ Prof. Hicham Elmonqui 23 / 26

Probability Theory: Joint Volchly Olethbolded Random Variables	Sums of Independent Random Variables
Examples (cont'd)	String at some fixed time, let $S(n)$ denote the price of a certain security at the end of <i>n</i> additional weeks, $n \geq 1$. A popular model for the evolution of these prices assumes that the price ratios $S(n)/S(n-1), n \geq 1$, are i.i.d. lognormal random variables. Assuming this model, with parameters $\mu = .0165, \sigma = .0730$, what is the probability that the price of the security increases over each of the next two weeks?
Y is lognormal if it can be expressed as $Y = e^X$ where <i>X</i> is a normal RV.	
Solution	
The probability that the price is up after one week is	
$P\left\{\frac{S(1)}{S(0)} > 1\right\} = P\left\{\log\left(\frac{S(1)}{S(0)}\right) > 0\right\} = P\left\{Z > \frac{0-.0165}{.0730}\right\}$	
Since the successive price ratios are independent, the probability that the price increases over each of the next two weeks is $(.5894)^2 = .3474$	
Q2922 Prot. Hicham Elmongul	

Sums of Independent Poisson Random Variables

If *X* and *Y* are independent Poisson random variables with respective parameters λ_1 and λ_2 , calculate the distribution of $X + Y$. **Solution**

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables

I

The event $\{X + Y = n\}$ may be written as the union of the disjoint events ${X = k, Y = n-k}, 0 \le k \le n$. Therefore,

$$
P\{X + Y = n\}
$$
\n
$$
= \sum_{k=0}^{n} P\{X = k, Y = n - k\}
$$
\n
$$
= \sum_{k=0}^{n} P\{X = k\} P\{Y = n - k\}
$$
\n
$$
= \sum_{k=0}^{n} P\{X = k\} P\{Y = n - k\}
$$
\n
$$
= \sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} \times e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!}
$$
\n
$$
= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}
$$
\n
$$
= e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!}
$$
\n
$$
= e^{-(\lambda_1 + \lambda_2)} \frac{(1 + \lambda_2)^n}{n!}
$$

If X_i , $i = 1, 2, \cdots, n$ are independent Poisson RVs with respective parameters λ_i , $i = 1, 2, \dots, n$, then $X_1 + X_2 + \dots + X_n \sim \text{Poisson}(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ c 2022 Prof. Hicham Elmongui 25 / 26

Sums of Independent Binomial Random Variables If *X* and *Y* are independent binomial random variables with respective parameters (n, p) and (m, p) , calculate the distribution of $X + Y$.

Probability Theory: Jointly Distributed Random Variables Sums of Independent Random Variables

I

Solution Recalling the interpretation of a binomial RV, and without any computation at all, $X + Y \sim \text{Binomial}(n + m, p)$ ■ *P* $(Y + V = k)$

$$
P\{X + Y = K\}
$$
\n
$$
= \sum_{i=0}^{n} P\{X = i, Y = k - i\}
$$
\n
$$
= \sum_{i=0}^{n} P\{X = i\} P\{Y = k - i\}
$$
\n
$$
= \sum_{i=0}^{n} {n \choose i} p^{i} q^{n-i} \times {m \choose k - i} p^{k-i} q^{m-k+i}
$$
\n
$$
= {n+m \choose k} p^{k} q^{m+n-k}
$$
\nIf $X_i, i = 1, \dots, N$ are independent binomial RVs with respective parame-

ters (n_i, p) , $i = 1, \dots, N$, then $X_1 + \dots + X_N$ ∼ Binomial $(n_1 + \dots + n_N, p)$ c 2022 Prof. Hicham Elmongui 26 / 26