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Chapter 06: Jointly Distributed Random Variables

Probability Theory: Jointly Distributed Random Variables Joint Distribution Functions

Joint Cumulative Probability Distribution Function
Definition
For any two random variables X and Y , the joint cumulative probability
distribution function of X and Y is defined by

F (a,b) = P{X ≤ a,Y ≤ b} −∞ < a,b < ∞

Marginal CDF from joint CDF

FX (a) = P{X ≤ a}
= P{X ≤ a,Y < ∞}

= P
(

lim
b→∞
{X ≤ a,Y ≤ b}

)

= lim
b→∞

P{X ≤ a,Y ≤ b}

= lim
b→∞

F (a,b)

≡ F (a,∞)

FY (b) = P{Y ≤ b}
= lim

a→∞
F (a,b)

≡ F (∞,b)
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Joint Cumulative Probability Distribution Function

Answering probability statements in terms of joint CDF

P{X > a,Y > b}= 1−P
(
{X > a,Y > b}c

)

= 1−P
(
{X > a}c ∪{Y > b}c

)

= 1−P ({X ≤ a}∪{Y ≤ b})
= 1− [P{X ≤ a}+ P{Y ≤ b}−P{X ≤ a,Y ≤ b}]
= 1−FX (a)−FY (b) + F (a,b)

In general, whenever a1 < a2 and b1 < b2

P{a1 < X ≤ a2,b1 < Y ≤ b2}=

F (a2,b2) + F (a1,b1)−F (a1,b2)−F (a2,b1)
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Joint Probability Mass Function

Definition
When X and Y are both discrete RVs, the joint pmf of X and Y is defined
by

p(x ,y) = P{X = x ,Y = y}

Marginal pmf from joint pmf

pX (x) = P{X = x}
= ∑

y :p(x ,y)>0
p(x ,y)

pY (y) = P{Y = y}
= ∑

x :p(x ,y)>0
p(x ,y)
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Example
Suppose that 3 balls are randomly selected from an urn containing 3 red,
4 white, and 5 blue balls. Let X and Y denote, respectively, the number
of red and white balls chosen. Find the joint pmf of X and Y .

Solution
p(i , j) =

(
3
i

)(
4
j

)(
5

3− i− j

)/(12
3

)

i
j

0 1 2 3
Row sum
P{X = i}

0 10/220 40/220 30/220 4/220 84/220

1 30/220 60/220 18/220 0 108/220

2 15/220 12/220 0 0 27/220

3 1/220 0 0 0 1/220

Col sum
56/220 112/220 48/220 4/220

P{Y = j}
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Joint Probability Density Function
Definition
For any two jointly continuous RVs, X and Y , the joint pdf of X and Y is
defined, over every set C in the two-dimensional plane, by

P
{

(X ,Y ) ∈ C
}

=
∫∫

(x ,y)∈C

f (x ,y) dx dy

by defining C =
{

(x ,y) : x ∈ A,y ∈ B
}

,

P {X ∈ A,Y ∈ B}=
∫

B

∫

A
f (x ,y) dx dy

F (a,b) = P{X ≤ a,Y ≤ b}=
∫ b

−∞

∫ a

−∞
f (x ,y) dx dy

Upon differentiation,

f (a,b) =
∂ 2

∂a ∂b
F (a,b)
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Examples
The joint density function of X and Y is given by

f (x ,y) = c(y2−x2)e−y |x | ≤ y , 0 < y < ∞

Find c

Solution

1 =
∫∫

(x ,y)

f (x ,y) dx dy

=
∫ ∞

0

∫ y

−y
c(y2−x2)e−y dx dy

= c
∫ ∞

0
e−y



(

xy2− x3

3

)∣∣∣∣∣

y

−y


 dy

=
4c
3

∫ ∞

0
y3e−y dy

1 =
4c
3
×Γ(4)

=
4c
3
×3!

= 8c

c =
1
8
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Examples (cont’d)

The joint pdf of X and Y is given
by

f (x ,y) =

{
2e−x e−2y 0 < x ,y < ∞
0 otherwise

Compute P{X > Y}

Solution

P{X > Y}=
∫∫

(x ,y):x>y

f (x ,y) dx dy

=
∫ ∞

0

∫ ∞

y
2e−x e−2y dx dy

=
∫ ∞

0
2e−2y

(
−e−x

∣∣∣
∞

y

)
dy

=
∫ ∞

0
2e−2y e−y dy

=
∫ ∞

0
2e−3y dy

=−2
3

e−3y
∣∣∣
∞

0

=
2
3
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Marginal Probability Density Function
Definition
If X and Y are jointly continuous, they are individually continuous. Their
pdf can be obtained as follows:

P {X ∈ A}= P
{

X ∈ A,Y ∈ (−∞,∞)
}

=
∫

A

∫ ∞

−∞
f (x ,y) dy dx

=
∫

A
fX (x)dx

where

fX (x) =
∫ ∞

−∞
f (x ,y) dy

Marginal pdf from joint pdf

fX (x) =
∫ ∞

−∞
f (x ,y) dy fY (y) =

∫ ∞

−∞
f (x ,y) dx
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Example
The joint density function of X and Y is given by

f (x ,y) =
6
7

(
x2 +

xy
2

)
0 < x < 1, 0 < y < 2

Compute the density function of X

Solution

fX (x) =
∫ ∞

−∞
f (x ,y) dy

=
∫ 2

0

6
7

(
x2 +

xy
2

)
dy

=
6
7

(
x2y +

xy2

4

)∣∣∣∣∣

2

0

=
6
7

(
2x2 + x

)
0 < x < 1
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Independent Random Variables
Definition
The RVs X and Y are said to be independent if, for any two sets of real
numbers A and B,

P{X ∈ A, Y ∈ B}= P{X ∈ A}P{Y ∈ B}
In other words, X and Y are independent if, for all A and B, the events
EA = {X ∈ A} and FB = {Y ∈ B} are independent.

In terms of joint CDF, X and Y are independent if
F (a,b) = FX (a)FY (b) for all a,b

In case of discrete RVs, X and Y are independent if
p(x ,y) = pX (x)pY (y) for all x ,y

In case of continuous RVs, X and Y are independent if
f (x ,y) = fX (x)fY (y) for all x ,y

Random variables that are not independent are said to be dependent.
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Examples
If X1 and X2 are independent exponential RVs with respective parameters
λ1 and λ2, find the distribution of Z = X1/X2.

Solution
Since X1 and X2 are independent, their joint pdf would be

fX1,X2(x ,y) = λ1e−λ1x λ2e−λ2y , x ,y > 0

The distribution of Z = X1/X2 is
FZ (z) = P (Z ≤ z)

= P (X1/X2 ≤ z)

= P (X1 ≤ zX2)

=
∫∫

(x ,y):x≤zy

fX1,X2(x ,y) dx dy

=
∫ ∞

0

∫ zy

0
λ1e−λ1x λ2e−λ2y dx dy =

λ1z
λ1z + λ2
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Examples (cont’d)
The joint density function of X and Y is given by

f (x ,y) = xe−(x+y) x > 0, y > 0

Are X and Y independent?

Solution

fX (x) =
∫ ∞

−∞
f (x ,y) dy

=
∫ ∞

0
xe−(x+y) dy

= xe−x
∫ ∞

0
e−y dy

= xe−x
(
−e−y

∣∣∣
∞

0

)

= xe−x , x > 0

fY (y) =
∫ ∞

−∞
f (x ,y) dx

=
∫ ∞

0
xe−(x+y) dx

= e−y
∫ ∞

0
xe−x dx

= e−y
∫ ∞

0
e−x dx

= e−y , y > 0

f (x ,y) = fX (x)fY (y) ∀x ,y =⇒ X and Y are independent.
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Independent Random Variable
Proposition
The continuous (discrete) random variables X and Y are independent if
and only if their joint pdf (pmf) can be expressed as

fX ,Y (x ,y) = h(x)g(y) −∞ < x < ∞, −∞ < y < ∞

Proof
Independence implies that the preceding factorization holds.

Now, suppose that fX ,Y (x ,y) = h(x)g(y)

then 1 =
∫ ∞

−∞

∫ ∞

−∞
fX ,Y (x ,y)dx dy =

∫ ∞

−∞
h(x)dx

︸ ︷︷ ︸
C1

∫ ∞

−∞
g(y)dy

︸ ︷︷ ︸
C2

= C1C2

fX (x) =
∫ ∞

−∞
fX ,Y (x ,y)dy = C2h(x), fY (y) =

∫ ∞

−∞
fX ,Y (x ,y)dx = C1g(y)

Since C1C2 = 1, it follows that fX ,Y (x ,y) = fX (x)fY (y) �
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Example
The joint density function of X and Y is given by

f (x ,y) =

{
24xy 0 < x < 1, 0 < y < 1, 0 < x + y < 1
0 otherwise

Are X and Y independent?

Solution
Because the region in which the joint density is nonzero cannot be
expressed in the form x ∈ A,y ∈ B, the joint density does not factor, so
the random variables are not independent.
Let

I(x ,y) =

{
1 0 < x < 1, 0 < y < 1, 0 < x + y < 1
0 otherwise

The function f (x ,y) = 24xy I(x ,y) clearly does not factor into a part
depending only on x and another depending only on y , so the RVs are
not independent.
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Sums of Independent Random Variables

CDF of X+Y
FX+Y (a)

= P{X + Y ≤ a}

=
∫∫

x+y≤a

fX (x)fY (y) dx dy

=
∫ ∞

−∞

∫ a−y

−∞
fX (x)fY (y) dx dy

=
∫ ∞

−∞

∫ a−y

−∞
fX (x) dx fY (y) dy

=
∫ ∞

−∞
FX (a−y)fY (y) dy

PDF of X+Y
fX+Y (a)

= d
da FX+Y (a)

= d
da

∫ ∞

−∞
FX (a−y)fY (y) dy

=
∫ ∞

−∞
d
da FX (a−y)fY (y) dy

=
∫ ∞

−∞
fX (a−y)fY (y) dy

The pdf fX+Y is the convolution of the pdf’s of X and Y .
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Sums of i.i.d. Uniform Random Variables
If X and Y are independent random variables, both uniformly distributed
on (0, 1), calculate the probability density of X + Y .

Solution

fX (a) = fY (a) =

{
1 0 < a < 1
0 otherwise

fX+Y (a) =
∫ ∞

−∞
fX (a−y)fY (y) dy

=
∫ 1

0
fX (a−y) dy

For 0 < a≤ 1,

fX+Y (a) =
∫ a

0
1 dy +

∫ 1

a
0 dy = a

For 1 < a < 2,

fX+Y (a) =
∫ a−1

0
0 dy +

∫ 1

a−1
1 dy = 2−a

fX+Y (a) =

{
a 0 < a≤ 1
2−a 1 < a < 2

Figure: Triangular Distribution
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Sums of Independent Gamma Random Variables
If X and Y are independent gamma random variables with respective
parameters (s,λ ) and (t ,λ ), calculate the probability density of X + Y .

Solution

fX (x) =
λe−λx (λx)s−1

Γ(s)
fY (y) =

λe−λy (λy)t−1

Γ(t)

fX+Y (a) =
∫ a

0

λe−λ (a−y)[λ (a−y)]s−1

Γ(s)
× λe−λy (λy)t−1

Γ(t)
dy

=
λ s+t e−λa

Γ(s)Γ(t)

∫ a

0
(a−y)s−1y t−1 dy

=
λ s+t e−λa as+t−1

Γ(s)Γ(t)

∫ 1

0
(1−z)s−1z t−1 dz (by letting z = y/a)

=
λe−λa(λa)s+t−1

Γ(s)Γ(t)
×B(s, t) =

λe−λa(λa)s+t−1

Γ(s)Γ(t)
× Γ(s)Γ(t)

Γ(s + t)

=
λe−λa(λa)s+t−1

Γ(s + t)
=⇒ X + Y ∼ Gamma(s + t ,λ )
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Sums of Independent Gamma Random Variables
For a fixed value of λ , the family of gamma distributions is closed under
convolution.

Proposition
If Xi , i = 1,2, · · · ,n are independent gamma random variables with re-
spective parameters (ti ,λ ), i = 1,2, · · · ,n, then

n

∑
i=1

Xi ∼ Gamma

(
n

∑
i=1

ti ,λ

)

Example
If Xi , i = 1,2, · · · ,n are i.i.d. exponential RVs with parameter λ , calculate
the pdf of X1 + X2 + · · ·+ Xn.

Solution
An exponential RV with parameter λ is the same as a gamma RV with
parameters (1,λ ), it follows that X1 + X2 + · · ·+ Xn ∼ Gamma(n,λ ).
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Example: χ2 Probability Distribution

If Z1,Z2, · · · ,Zn are indep standard normal RVs, then χ2
n = ∑n

i=1 Z 2
i is said

to have the chi-squared dist. with n degrees of freedom. Calculate fχ2
n
(y)

Solution

fZ 2(y) =
1

2
√

y
(
fZ (
√

y) + fZ (−√y)
)

=
1

2
√

y
× 2√

2π
e−y/2

=
(1/2)

1
2 y

1
2−1e−y/2

Γ
(

1
2

)

=⇒ χ2
1 = Z 2 ∼ Gamma

(
1
2 ,

1
2

)

χ2
n =

n

∑
i=1

Z 2
i

χ2
n ∼ Gamma

(
n
2 ,

1
2

)

fχ2
n
(y) =

(1/2)
n
2 y

n
2−1e−y/2

Γ
(n

2

) , y > 0

=
y

n
2−1e−y/2

2
n
2 Γ
(n

2

) , y > 0

Γ

(
n
2

)
=

{(n
2 −1

)
! n is even(n

2 −1
)

Γ
(n

2 −1
)

n is odd
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Sums of Independent Normal Random Variables
If X and Y are independent RVs that are normally distributed with
respective parameters (µ1,σ2

1 ) and (µ2,σ2
2 ), calculate the pdf of X + Y .

Solution

fX (x) =
1√

2πσ1
exp

{
− (x−µ1)2

2σ2
1

}
, fY (y) =

1√
2πσ2

exp

{
− (y −µ2)2

2σ2
2

}

fX+Y (a) =
∫ ∞

−∞
fX (a−y)fY (y) dy

fX+Y (a) =
∫ ∞

−∞

1√
2πσ1

exp

{
− ((a−y)−µ1)2

2σ2
1

}
1√

2πσ2
exp

{
− (y −µ2)2

2σ2
2

}
dy

= · · ·= 1√
2π(σ2

1 + σ2
2 )

exp

{
− (a−µ1−µ2)2

2(σ2
1 + σ2

2 )

}

X + Y ∼ Normal
(

µ1 + µ2,σ2
1 + σ2

2

)
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Sums of Independent Normal Random Variables

The family of normal distributions is closed under convolution.

Proposition
If Xi , i = 1,2, · · · ,n are independent normal random variables with respec-
tive parameters (µi ,σ2

i ), i = 1,2, · · · ,n, then

n

∑
i=1

Xi ∼ Normal

(
n

∑
i=1

µi ,
n

∑
i=1

σ2
i

)
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Example
A basketball team will play a 44-game season of which 26(18) games
against class A(B) teams. Suppose that the team will beat a class A(B)
team with probability .4(.7) and that the results of the different games
are independent. How likely is it that the team wins 25 games or more?

Solution
Let XA and XB respectively denote the number of games the team
wins against class A and against class B teams.
XA and XB are indep binomial RVs (approximated as normal RVs)

E [XA] = 26(.4) = 10.4
Var(XA) = 26(.4)(.6) = 6.24

E [XB] = 18(.7) = 12.6
Var(XB) = 18(.7)(.3) = 3.78

E [XA + XB] = 10.4 + 12.6 = 23
Var(XA + XB) = 6.24 + 3.78 = 10.02

P{XA + XB ≥ 25}
= P{XA + XB ≥ 24.5} (cont. correction)

= P
{

XA + XB−23√
10.02

≥ 24.5−23√
10.02

}

≈ P {Z ≥ .4739} = 1−P {Z < .4739}
≈ .3178
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Examples (cont’d)
Starting at some fixed time, let S(n) denote the price of a certain security
at the end of n additional weeks, n≥ 1. A popular model for the evolution
of these prices assumes that the price ratios S(n)/S(n−1),n ≥ 1, are
i.i.d. lognormal random variables. Assuming this model, with parameters
µ = .0165,σ = .0730, what is the probability that the price of the security
increases over each of the next two weeks?

Y is lognormal if it can be expressed as Y = eX where X is a normal RV.

Solution
The probability that the price is up after one week is

P
{

S(1)

S(0)
> 1
}

= P

{
log

(
S(1)

S(0)

)
> 0

}
= P

{
Z >

0− .0165
.0730

}

≈ P {Z >−.2260} = P {Z < .2260} ≈ .5894
Since the successive price ratios are independent, the probability that
the price increases over each of the next two weeks is (.5894)2 = .3474
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Sums of Independent Poisson Random Variables
If X and Y are independent Poisson random variables with respective
parameters λ1 and λ2, calculate the distribution of X + Y .
Solution
The event {X + Y = n} may be written as the union of the disjoint events
{X = k ,Y = n−k},0≤ k ≤ n. Therefore,

P{X + Y = n}

=
n

∑
k=0

P{X = k ,Y = n−k}

=
n

∑
k=0

P{X = k}P{Y = n−k}

=
n

∑
k=0

e−λ1
λ k

1
k !
× e−λ2

λ n−k
2

(n−k)!

= e−(λ1+λ2)
n

∑
k=0

1
k !(n−k)!

λ k
1 λ n−k

2

=
e−(λ1+λ2)

n!

n

∑
k=0

n!

k !(n−k)!
λ k

1 λ n−k
2

= e−(λ1+λ2)
(λ1 + λ2)n

n!

X + Y ∼ Poisson(λ1 + λ2)

If Xi , i = 1,2, · · · ,n are independent Poisson RVs with respective parame-
ters λi , i = 1,2, · · · ,n, then X1 + X2 + · · ·+ Xn ∼ Poisson(λ1 + λ2 + · · ·+ λn)
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Sums of Independent Binomial Random Variables
If X and Y are independent binomial random variables with respective
parameters (n,p) and (m,p), calculate the distribution of X + Y .

Solution
Recalling the interpretation of a binomial RV, and without any computa-
tion at all, X + Y ∼ Binomial(n + m,p) �
P{X + Y = k}

=
n

∑
i=0

P{X = i ,Y = k − i}

=
n

∑
i=0

P{X = i}P{Y = k − i}

=
n

∑
i=0

(
n
i

)
piqn−i ×

(
m

k − i

)
pk−iqm−k+i

= pkqm+n−k
n

∑
i=0

(
n
i

)(
m

k − i

)

=

(
n + m

k

)
pkqm+n−k

X + Y ∼ Binomial(n + m,p)

If Xi , i = 1, · · · ,N are independent binomial RVs with respective parame-
ters (ni ,p), i = 1, · · · ,N, then X1 + · · ·+ XN ∼ Binomial(n1 + · · ·+ nN ,p)
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